Modified Hausdorff Fractal Dimension (MHFD)
نویسندگان
چکیده
The Hausdorff fractal dimension has been a fast-to-calculate method to estimate complexity of fractal shapes. In this work, a modified version of this fractal dimension is presented in order to make it more robust when applied in estimating complexity of non-fractal images. The modified Hausdorff fractal dimension stands on two features that weaken the requirement of presence of a shape and also reduce the impact of the noise possibly presented in the input image. The new algorithm has been evaluated on a set of images of different character with promising performance.
منابع مشابه
Fractal Dimensions and Von Neumann Algebras
Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropy for finite sets of self-adjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebrai...
متن کاملFractal Entropies and Dimensions for Microstates Spaces
Using Voiculescu’s notion of a matricial microstate we introduce fractal dimensions and entropies for finite sets of selfadjoint operators in a tracial von Neumann algebra. We show that they possess properties similar to their classical predecessors. We relate the new quantities to free entropy and free entropy dimension and show that a modified version of free Hausdorff dimension is an algebra...
متن کاملHausdorff Dimension For Dummies
phenomena in two dimensions. I spent most of the academic years 2013-2015 in Bonn, Germany (at the Max-Planck Institut and then the Hausdorff Center). In general, the Hausdorff dimension of a product is at least the sum of the dimensions of the two spaces. Does equality hold if one space is Euclidian? So let be. I find this discussion in Wikipedia very good: Fractal dimension Imagine a particul...
متن کاملFinite-State Dimension of Individual Sequences
I Classical Hausdorff Dimension (Fractal Dimension) I Lutz’s Effectivization of Hausdorff Dimension via gales [4] I The Cantor Space C I Restriction of gales to Complexity Classes endows sets with dimension within the complexity class. I Constructive Dimension, Resource Bounded Dimension I Zero-dimensional sets can have positive dimension I Lowest level: finite-state machines → Finite-State Dim...
متن کاملHausdorff measure of uniform self-similar fractals
Let d ≥ 1 be an integer and E a self-similar fractal set, which is the attractor of a uniform contracting iterated function system (UIFS) on Rd. Denote by D the Hausdorff dimension, by HD(E) the Hausdorff measure and by diam(E) the diameter of E. If the UIFS is parametrised by its contracting factor c, while the set ω of fixed points of the UIFS does not depend on c, we will show the existence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.03493 شماره
صفحات -
تاریخ انتشار 2015